Pengertian data mining
Alasan utama untuk menggunakan data mining adalah untuk membantu dalam analisis koleksi pengamatan perilaku. Data tersebut rentan terhadap collinearity karena diketahui keterkaitan. Fakta yang tak terelakkan data mining adalah bahwa subset/set data yang dianalisis mungkin tidak mewakili seluruh domain, dan karenanya tidak boleh berisi contoh-contoh hubungan kritis tertentu dan perilaku yang ada di bagian lain dari domain . Untuk mengatasi masalah semacam ini, analisis dapat ditambah menggunakan berbasis percobaan dan pendekatan lain, seperti Choice Modelling untuk data yang dihasilkan manusia. Dalam situasi ini, yang melekat dapat berupa korelasi dikontrol untuk, atau dihapus sama sekali, selama konstruksi desain eksperimental.
Beberapa teknik yang sering disebut-sebut dalam literatur Data Mining dalam penerapannya antara lain: clustering, classification, association rule mining, neural network, genetic algorithm dan lain-lain. Yang membedakan persepsi terhadap Data Mining adalah perkembangan teknik-teknik Data Mining untuk aplikasi pada database skala besar. Sebelum populernya Data Mining, teknik-teknik tersebut hanya dapat dipakai untuk data skala kecil saja.
buk, ingin tanya tentang teknik data mining untuk memprediksi penjualan suatu produk yang memiliki riwayat penjualan berbentuk seasonal trend selain holt-winter apa ya buk? saya pernah menulis artikel tentang holt winter berikut: http://datacomlink.blogspot.co.id/2015/12/serumit-apa-forecast-metode-holt.html
BalasHapus